Obrázky na stránke
PDF
ePub

piece of yellow wood, for instance, and set it in the ray of a red colour; this wood will instantly be tinged red. But set it in the ray of a green colour, it assumes a green colour, and so of all the rest.

From what cause, therefore, do colours arise in Nature? It is nothing but the disposition of bodies to reflect the rays of a certain order and to absorb all the rest.

What, then, is this secret disposition? Sir Isaac Newton demonstrates that it is nothing more than the density of the small constituent particles of which a body is composed. And how is this reflection performed? It was supposed to arise from the rebounding of the rays, in the same manner as a ball on the surface of a solid body. But this is a mistake, for Sir Isaac taught the astonished philosophers that bodies are opaque for no other reason but because their pores are large, that light reflects on our eyes from the very bosom of those pores, that the smaller the pores of a body are the more such a body is transparent. Thus paper, which reflects the light when dry, transmits it when oiled, because the oil, by filling its pores, makes them much smaller.

It is there that examining the vast porosity of bodies, every particle having its pores, and every particle of those particles having its own, he shows we are not certain that there is a cubic inch of solid matter in the universe, so far are we from conceiving what matter is. Having thus divided, as it were, light into its elements, and carried the sagacity of his discoveries so far as to prove the method of distinguishing compound colours from such as are primitive, he shows that these elementary rays, separated by the prism, are ranged in their order for no other reason but because they are refracted in that very order; and it is this property (unknown till he discovered it) of breaking or splitting in this proportion; it is this unequal refraction of rays, this power of refracting the red less than the orange colour, &c., which he calls the different refrangibility. The most reflexible rays are the most refrangible, and from hence he evinces that the same power is the cause both of the reflection and refraction of light.

But all these wonders are merely but the opening of his discoveries. He found out the secret to see the vibrations or fits of light which come and go incessantly, and which either transmit light or reflect it, according to the density of the parts they meet with. He has pre

sumed to calculate the density of the particles of air necessary between two glasses, the one flat, the other convex on one side, set one upon the other, in order to operate such a transmission or reflection, or to form such and such a colour.

From all these combinations he discovers the proportion in which light acts on bodies and bodies act on light.

He saw light so perfectly, that he has determined to what degree of perfection the art of increasing it, and of assisting our eyes by telescopes, can be carried.

Descartes, from a noble confidence that was very excusable, considering how strongly he was fired at the first discoveries he made in an art which he almost first found out; Descartes, I say, hoped to discover in the stars, by the assistance of telescopes, objects as small as those we discern upon the earth.

But Sir Isaac has shown that dioptric telescopes cannot be brought to a greater perfection, because of that refraction, and of that very refrangibility, which at the same time that they bring objects nearer to us, scatter too much the elementary rays. He has calculated in these glasses the proportion of the scattering of the red and of the blue rays; and proceeding so far as to demonstrate things which were not supposed even to exist, he examines the inequalities which arise from the shape or figure of the glass, and that which arises from the refrangibility. He finds that the object glass of the telescope being convex on one side and flat on the other, in case the flat side be turned towards the object, the error which arises from the construction and position of the glass is above five thousand times less than the error which arises from the refrangibility; and, therefore, that the shape or figure of the glasses is not the cause why telescopes cannot be carried to a greater perfection, but arises wholly from the nature of light.

For this reason he invented a telescope, which discovers objects by reflection, and not by refraction. Telescopes of this new kind are very hard to make, and their use is not easy; but, according to the English, a reflective telescope of but five feet has the same effect as another of a hundred feet in length.

LETTER XVII

ON INFINITES IN GEOMETRY, AND SIR ISAAC NEWTON'S CHRONOLOGY

THE labyrinth and abyss of infinity is also a new course Sir Isaac Newton has gone through, and we are obliged to him for the clue, by whose assistance we are enabled to trace its various windings.

Descartes got the start of him also in this astonishing invention. He advanced with mighty steps in his geometry, and was arrived at the very borders of infinity, but went no farther. Dr. Wallis, about the middle of the last century, was the first who reduced a fraction by a perpetual division to an infinite series.

The Lord Brouncker employed this series to square the hyperbola. Mercator published a demonstration of this quadrature; much about which time Sir Isaac Newton, being then twenty-three years of age, had invented a general method, to perform on all geometrical curves what had just before been tried on the hyperbola.

It is to this method of subjecting everywhere infinity to algebraical calculations, that the name is given of differential calculations or of fluxions and integral calculation. It is the art of numbering and measuring exactly a thing whose existence cannot be conceived.

And, indeed, would you not imagine that a man laughed at you who should declare that there are lines infinitely great which form an angle infinitely little?

That a right line, which is a right line so long as it is finite, by changing infinitely little its direction, becomes an infinite curve; and that a curve may become infinitely less than another curve?

That there are infinite squares, infinite cubes, and infinites of infinites, all greater than one another, and the last but one of which is nothing in comparison of the last?

All these things, which at first appear to be the utmost excess of frenzy, are in reality an effort of the sublety and extent of the human mind, and the art of finding truths which till then had been unknown.

This so bold edifice is even founded on simple ideas. The business is to measure the diagonal of a square, to give the area of a curve, to

find the square root of a number, which has none in common arithmetic. After all, the imagination ought not to be startled any more at so many orders of infinites than at the so well-known proposition, viz., that curve lines may always be made to pass between a circle and a tangent, or at that other, namely, that matter is divisible in infinitum. These two truths have been demonstrated many years, and are no less incomprehensible than the things we have been speaking of.

For many years the invention of this famous calculation was denied to Sir Isaac Newton. In Germany Mr. Leibnitz was considered as the inventor of the differences or moments, called fluxions, and Mr. Bernoulli claimed the integral calculus. However, Sir Isaac is now thought to have first made the discovery, and the other two have the glory of having once made the world doubt whether it was to be ascribed to him or them. Thus some contested with Dr. Harvey the invention of the circulation of the blood, as others disputed with Mr. Perrault that of the circulation of the sap.

Hartsocher and Leuwenhoek disputed with each other the honour of having first seen the vermiculi of which mankind are formed. This Hartsocher also contested with Huygens the invention of a new method of calculating the distance of a fixed star. It is not yet known to what philosopher we owe the invention of the cycloid.

Be this as it will, it is by the help of this geometry of infinites that Sir Isaac Newton attained to the most sublime discoveries. I am now to speak of another work, which, though more adapted to the capacity of the human mind, does nevertheless display some marks of that creative genius with which Sir Isaac Newton was informed in all his researches. The work I mean is a chronology of a new kind, for what province soever he undertook he was sure to change the ideas and opinions received by the rest of men.

Accustomed to unravel and disentangle chaos, he was resolved to convey at least some light into that of the fables of antiquity which are blended and confounded with history, and fix an uncertain chronology. It is true that there is no family, city, or nation, but endeavours to remove its original as far backward as possible. Besides, the first historians were the most negligent in setting down the eras: books were infinitely less common than they are at this time,

and, consequently, authors being not so obnoxious to censure, they therefore imposed upon the world with greater impunity; and, as it is evident that these have related a great number of fictitious particulars, it is probable enough that they also gave us several false eras. It appeared in general to Sir Isaac that the world was five hundred years younger than chronologers declare it to be. He grounds his opinion on the ordinary course of Nature, and on the observations which astronomers have made.

By the course of Nature we here understand the time that every generation of men lives upon the earth. The Egyptians first employed this vague and uncertain method of calculating when they began to write the beginning of their history. These computed three hundred and forty-one generations from Menes to Sethon; and, having no fixed era, they supposed three generations to consist of a hundred years. In this manner they computed eleven thousand three hundred and forty years from Menes's reign to that of Sethon. The Greeks before they counted by Olympiads followed the method of the Egyptians, and even gave a little more extent to generations, making each to consist of forty years.

Now, here, both the Egyptians and the Greeks made an erroneous computation. It is true, indeed, that, according to the usual course of Nature, three generations last about a hundred and twenty years; but three reigns are far from taking up so many. It is very evident that mankind in general live longer than kings are found to reign, so that an author who should write a history in which there were no dates fixed, and should know that nine kings had reigned over a nation; such a historian would commit a great error should he allow three hundred years to these nine monarchs. Every generation takes about thirty-six years; every reign is, one with the other, about twenty. Thirty kings of England have swayed the sceptre from William the Conqueror to George I., the years of whose reigns added together amount to six hundred and forty-eight years; which, being divided equally among the thirty kings, give to every one a reign of twenty-one years and a half very near. Sixtythree kings of France have sat upon the throne; these have, one with another, reigned about twenty years each. This is the usual course of Nature. The ancients, therefore, were mistaken when they

« PredošláPokračovať »